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17. The above formulas express the energy in absolute
units; a horsepower contains 736 X 107 of these units.
Therefore

mA

= 736x107 @)

P

where P is the developed energy expressed in horsepowers.
In the atmosphere and the ocean problems it is more
convenient to employ tons instead of grams; therefore
we write '

NA

P = 7350

HP. 4)

where N is the mass of moving air or water expressed in
tons per second of the C.G. S. system. A is as before the
numll)\er of solenoids in the inclined solenoidal surface or
streak.

18. The circulation represented in figure 2 can also be
conceived at two different currents of water; the one
current consisting of cold, specifically heavier water that
flows down from the cold source toward the warm source;
the other current of warm, lighter water that rises from the
source of heat and flows toward the source of cold. There
are, in fact, two actual waterfalls, the one of denser water
that sinks and the other of lighter water that rises. Both
these falls develop kinetic energy in the same way as do
the waterfalls of our rivers. Tie only difference is that,
instead of the total specific gravity of the water of the
river computation, we here have to employ the difference
inspecificgravity between the ﬂowilﬁ and thesurrounding,
adjacent water. This is a natural consequence of the
. Archimedean principle of pressure of adjacent surround-

ing water against the flowing water. Employing the thus
reduced specific gravity, the actual height of the waterfall,
and the stream ﬁischarge, the computation of the energy
gives the same result as does the solenoidal formula.

19. One can also compute the correct amount of devel-
oped energy by employing the actual specific gravity and

o height of the waterfall if a corresponding reduction
is applied to the mass of the flowing water; or we may use
the actual specific gravity and the stream discharge in
combination with an appropriately reduced height of
waterfall. I have found tge lpa.st of these procedures the
most practical because that method permits the direct
substitution of tons of flowing water or air for the cubic
meters of water of the river they are compared with.

20. In the atmosphere, the snow and ice covered
mountain tops and high gla.tea.us correspond with the cold
source (' of figure 2, and the warm surface water of the
warm ocean with its warm currents correspond with the
warm source W. The circulation of the air that exists
in the atmosphere is of the same kind and nature as the
circulation of the water shown in figure 2. Thus the air
warmed above the warm surface of the ocean rises and
spreads out horizontally until it comes in contact with the
cold mountain tops. Here it cools, sinks, and returns
along the earth's surface to the warm ocean only to repeat
the circulatory process. The warm current of air above
and the cold current below are separated by an inclined
surface corresponding to the inchned streak of figure 2.
This atmospheric surface contains the solenoids that
induce and maintain the atmospheric circulation. The
amount of kinetic energy developed by the two air cur-
rents can be estimated according to the manner above
described, either employing formula (4) or by comparing
the currents with the waterfalls.

21. The circulation of the water in the atmosphere is
also like the scheme of figure 2. In this case the source
of heat is the warm ocean surface whose water particles
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evaporate and rise in a gaseous form into the atmos-
phere; the cold source, () is the point in the atmosphere
where the water vapor is cooled and condensed into rain
orsnow. These forms fall and form rivers that flow back
to the ocean, 1. e., back to the source of heat W. In this
circulation an immense amount of kinetic energy is
produced—of it we use a very small fraction in our hydro-
electric and water-power plants. The largest part of the
energy of this circulation is consumed in producing the
wind, as the Swedish oceanographer, Prof. 8131:0 Peterson,
has shown. The computation of this energy by the
above methods offers no special difficulties.

22, The ocean currents also appear to follow the
scheme of figure 2. Let us consider, for instance, the
Gulf Stream. It has its origin in the great sargasso
vortex which carries the sun-warmed occan water of the
Tropics downward to a depth of 600 meters. This is the
source of heat W, of the Gulf Stream. From hers the
warm Gulf Stream water flows along the Atlantic trough
northward until it reaches the ice of the Arctic Ocean.
This ice corresponds to the cold source ' of figure 2; it
cools the Gulf Stream water which sinks to the depths
along which it flows back as a cold undercurrent toward
W in the Tropics. Here it is again warmed, rises to the
surface, and again wanders northward. On its northward
course the upper portion of the Gulf Stream becomes
shallower; under the Tropics it is 600 meters deep but at
Spitzbergen it is only 200 meters deep. The surface
dividing the warm upper stream from the cold under-
current is therefore inclined like the sloping streak of
ficure 2; therefore, this streak contains a number of
solenoids, amounting to about 150,000, according to
hydrographic observations. The mass of water that
flows 1n the Gulf Stream is estimated at 25,000,000 cu. m.
per second. Therefore, and by equation (4), the Gulf

tream delivers about 500,000,000 HP. This amount of
energy is, of course, applied to the task of driving the
Gulf Stream itself, whereby the internal friction of the
water reconverts it into heat. The Gulf Stream may be
compared to a river that discharges 25,000,000 cu. m. per
second over a waterfall 115 meters high. Such a waterfall
would develop the same amount of energy as does the
Gulf Stream,

23. In order to be able to make such numerical esti-
mates of the energy of the atmospheric currents we must
have the proper data at appropriately located mountain
stations and kite stations.

24. For the present we see from the foregoing that the
simple experiment presented in figure 2 possesses many
large and important counterparts in the atmosphere and
the hydrosphere. Indeed, it can hardly be otherwise
since 1t is itself a picture in miniature of the powerful
heat engine that creates the currents of the wind and the
ocean.

SOME RECENT RESEARCHES ON THE MOTION OF
FLUIDS.

By Harry Bareman, M. A, Ph, D,

[Dated: Johns Hopkins University, Baltimore, Apr. 26, 1915.]

1. The early attempts of mathematicians to calculate
the distribution of velocity in a fluid containing a solid
body either at rest or in motion, led to conclusions which
do not agree with experimental results.

In the continuous potential flow of a perfeci fluid it
was found, for instance, that a fluid of infinite extent
offers no resistance to uniform motion of the body, pro-
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vided the motion of the fluid is steady. This is the
so-called parador of d’Alembert (1). The result is con-
tradicted by experience, although it should be remem-
bered that for a spindle-shaped body of stream-line form
the resistance is very small (2) and in actual experiments
the fluid either has a free surface or is inclosed in a vessel
of finite size.

The assumption that the velocity is everywhere con-
tinuous also led to the conclusion that fluid 1ssuing from
the mouth of a tube immediately spreads out in all
directions (3), whereas in reality the fluid forms, at all
events for some distance, a more or less compact stream.
In 1847 Stokes (4), while discussing the motion of a fluid
contained within a rotating prism whose cross section
was a sector of a circle, came to the conclusion that when
the angle of the sector was greater than two right angles
a surface of discontinuity would form if the fluid were
perfect, but that there would be no true surface of dis-
continuity in the case of a viscous fluid. -

In 1868 Helmholtz (5) pointed out that whenever the
velocity in the continuous potential flow exceeds a certain
limit, &m pressure becomes negative and the liquid tears
asunder forming either a cavity or a surface of discontin-
uity. There is no doubt that a kind of cavitation actually
exists in certain motions of real fluids, being assisted in the
case of water by the air which is dissolved in it. The
idea was developed by Lord Kelvin (6) in a remarkable
paper “On the formation of coreless vortices by the
motion of a solid in an inviscid incompressible fluid,” in
which he concludes that if the square of the velocity of a
spherical solid exceeds § P, where P is the pressure in the
undisturbed fluid at infinity, cavitation will commence at
the back of the sphere and coreless vortices will be period-
ically formed and shed off behind the sphere during its
motion through the fluid. This result is of interest in con-
nection with the recent developments which will be
described in §2; its importance has recently been empha-
sized by J. B. Henderson (7). D’Alembert’s paradox is
considered by some writers (8) to indicate that a surface
of discontinuity must form when a solid body moves
through a perfect fluid. Duhem (9) on the other hand
regards it as implying the impossibility of a permanent
régime and has shown that the paradox still holds when
there are surfaces at which the velocity is discontinuous,
provided the surfaces do not extend to infinity or, in the
alternative case, provided the discontinuity vanishes at
infinity at least as rapidly as the velocity of the fluid itself
and in such a manner that a certain integral over n large
surface inclosing the fluid, vanishes when this surface
recedes to infinity. Villat (10) maintains, however, that
a surface of discontinuity which extends to infinity, can
exist when there is a permancent régime, but that the dis-
continuity of velocity does not satisfy the conditions laid
down in Duhem’s theorem, as is indicated by the mathe-
matical analysis in a particular example. Consequently
the possibility of a surface of discontinuity behind a mov-
ing body is not excluded by Duhem’s argument. More-
over, My Brillouin (11) has shown that if the pressure
vanishes at infinity and there is & permanent régime, when
a solid body moves uniformly through a perfect fluid there
must be points at which the pressure is negative unless
there is at least one surface of discontinuity which extends
to infinity. This is a generatization of the result obtained
by Lord };{elvin.

The mathematical theory of the mstion of a perfect
fluid in which there are vortex sheets ur surfaces of dis-
continuity at which one portion of fluid glides past another,
was first definitely applied to practical problems by Helm-
holtz (12). In the first instance the surface of discon-
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tinuity was introduced simply as a free surface of the
stream of fluid lowing from a large reservoir into a narrow
channel. Helmholtz concluded that the ultimate width
of the stream would be half that of the channel, a result
which is not very far from the truth (13). He was thus
able to give a fairly satisfactory mathematical theory of
jets, which accounted for the well-known instability of
gaseous jets (14). In the case of a jet of fluid in air a
finite discontinuity in velocity is inadmissible owing to
viscosity, but it is conceivable that Helmholtz’s theory
may be arrived at in the limiting case when the viscosity
tends to zero.

The theory of surfaces of discontinuity was afterwards
extended to the case in which a solid moves through a
fluid, and the mathematical analysis was developed by
Kirchhoff (15), Rayleigh (16), and many other writers
(17). Considerable progress has been made recently in
this theory of discontinuous potential flow, by Levi-
Civita (18), Cisotti (19), and Villat (20).

The theory has been used to determine the resistance
met by a solid body moving through a perfect fluid, on
the assumption that the wake behind the body is a region
of constant (or hydrostatic) pressure bounded by a
surface of discontinuity extending to infinity. A definite
finite value is found for the resistance, and so the theory
is not ruled out on account of D’Alembert’s paradox.
The theory agrees with experiment inasmuch as the re-
sistance is found to be proportional to the square of the
velocity of the body, but the calculated value for the
resistance in the case of a plane lamina moving through
air differs from the experimental value (21).

The theorfr of discontinuous motion has been attacked .
by Lord Kelvin (22), who claims that such a motion is
inconsistent with his theorem of least energy; that a
surface of discontinuity is unstable (23) and would also
disappear on account of viscosity. Another serious
objection is that the mass of ‘“dead water’’ which is
supposed to be carried along behind a body movi
through a fluid, would have an infinite kinetic energy‘gﬂﬁ
this would imply that an infinite amount of kinetic energy
is given to the fluid by the motion of the body. Since,
however, the velocity of the body is supposed to be main-
tained by some agency, it has been thought that the
type of motion in question might (conceivabl)g) be approxi-
mated to asymptotically as time elapses, though it could
not be established in a finite time (24).

The whole matter has been reviewed at some length by
Lanchester (25) who points out that Lord Kelvin’s mini-
mum theorem involved the hypothesis of continuity, andso
the first objection can be set aside. In econncction with
the other objections Lanchester states his views as follows:

(1) That whatever may be the value of the vis-
cosity, the initial motion from rest obeys
the lulerian equations, i. e., the motion'is
continuous (26).

(2) That the discontinuous system may, in a .
viscous fluid, be regarded as arising by
evolution from a motion initially obeying
the mathematical equations of continuous
motion. .

(3) That in fluids possessing diflerent values of
kinematic viscosity the time taken for the
evolution of the discontinuous system is
greater when the kinematic viscosity is less,
and vice versa.

(4) That the ultimate development of the dis-
continuous system of flow is more complete
the less the value of the kinematic viscosity,
and vice versa.
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The possibility -of the solution of the equations of
motion of a viscous fluid becoming discontinuous when
the viscosity approaches the value zero, may perhaps be
illustrated by & consideration of the equation:

u, 2u_
2t "3z = Vo
This equation possesses a solution of the form

i u=F(z+ Ut),
dF  _dF a¢Fr
UE-FF% = !l'a—z;
or

ar
(F+ Uy xa® = 2”%

where a is a constant. The solution is thus either

v
or
a—u—U 3 @+Ut—¢)
atu+ U~ ° ’

according as the + or — sign is taken. In the first
case there is no definite value of ¥ when v tends to zero,
while in the second case the limiting value of u is either
¢— U or —a— U according as z+ Ut is less or greater
than ¢. The limiting form of the solution is thus dis-
continuous.

It is clear from this example that the question of the
limiting form of the motion of a viscous fluid when the
viscosity tends to zero requires very careful investigation.
So far very little has been done on these lines, Put an
approximate mathematical theory of the motion of a
fluid whose viscosity is very small has been proposed by
Prandtl (27) and developed by some of his pupils (28).
The chief characteristic of the theory is the assumption
that the motion differs very little from a continuous po-
tential flow outside a ‘“thin layer of transition’” and
that within this layer there is a rapid fall of velocity;
for the motion in this layer the equations of motion of
a viscous fluid are used with a few simplifications.

The conclusions to which Prandtl comes are very
similar to those in Lanchester’s treatise. In the case
of the flow of fluid round a plate, when the flow is dirccted
at right angles to the plate at an infinite distance from
it, t‘ﬁe motion differs very little from the continuous

otentizl flow at the very beginning of the motion,
eing changed very little by the thin %ayer of transition
covering the edges. Soon, however, the fluid separates
from the plate and in consequence of the friction at the
wall a stream of fluid containing vortices issues from the
layer of transition. The type of flow now changes
behind the place of sepuration and » kind of vortex
sheet or sun}:xce of discontinuity appears to form, only
to be broken up on account of its instability into sepa-
rate vortices. These conclusions have been verified
by a series of experiments. A photographic reproduc-
tion of the pictures representing the flow is given in
Prandtl's paper.

A com liete mathematical study of the motion of a
viscous fluid as its velocity increases is very desirable.
The motion of a sphere in a viscous fluid when the velocity
of the sphere is small has been studied very thoroughly
by C. W. Oseen (29); he has made some allowance for the
“mertia terms,” i. e., the terms in the equations of mo-
tion which involve products of the component velocities
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and their derivatives, and he finds that when paUlp is
small —p being the density, p the coefficient of viscosity
of the fluid, a the radius of tﬁe sphere, and U its velocity
—the resistance is given to a second approximation by

the formula:
R =6naﬂv[1+g’l‘:7q]-

A similar result has been obtained recently by R. W.
Burgess in a paper which has just been presented to the
American Journal of Mathematics. Burgess has, more-
over, removed a defect in Oseen’s theory and has obtained
the modified stream-line function by a simple process.

- The first approximation for B, of course, agrees with
Stokes’s well-known formula. An approximate formula
for the resistance to the uniform motion of a right circu-
lar cylinder has been obtained by Lamb (30), the method
of derivation being analogous to that used by Oseen.

In these investigations it is assumed that the motion
is steady. There is, of course, vortex motion which is
appreciable only in the wake, but there are no isolated
vortices or cavities and no surfaces of discontinuity. If
a steady motion exists, the origin of these other types of
motion must be attributed to chance disturbances and
a possible instability of the steady state. Since, however,
in actual experiments a finite velocity of a moving solid
is attained gradually, the turbulent or discontinuous
motion may begin when the velocity exceeds a certain
limit, depending on the viscosity, as in the theory of
Osborne Reynolds (31). In this theory it is recognized
that a possible criterion of stability of a given state of

motion can depend only on the ratio p—g'—, where @ i3 a

characteristic length and U a characteristic velocity asso-
ciated with the motion. Osborne Reynolds was led to
the idea that turbulence sets in when this quantity ex-
ceeds a certain limit. This theory has been discussed
with conflicting conclusions by Lord Kelvin (32), Lord
anleigh (33), H. A. Lorentz (34), W. McFadden Orr (35),
F. R. Sharpe (36), V. W. Ekman (37), C. W. Oscen (38),
A. Sommerfeld (39), G. Hamel (40), R. von Mises (41),
and other writers. The question must still be regarded
as unsettled.

On account of instability it is difficult to understand
how a surface of discontinuity could be approximated to
during the course of the motion of a viscous fluid; never-
theless the results which are obtained by means of the
theory apparently agree qualitatively with experiments,
so that it would be unwise to reject the theory simply on
account of this difficulty.

One serious objection which can be ur%ed against the
theory on experimental grounds, is that the theory does
not account for the variation of pressure observed over
the back of a square plate moving through air.

The distribution of pressure over both faces of a plane
lamina moving with constant velocity through air has
been determined experimentally by several observers
(42). In some cases a whirling table was used, but the
results obtained in this way are not satisfactory. The
best observations have been made by carrying the lamina
in a moving vehicle as in some of Langley’s experiments.
Armand de Gramont, Duc de Guiche, has recently adopted
this method in an elaborate series of experiments carried
out in 2 motor car and has made & number of beautiful
diagrams which show very clearly that the pressure on the
back of a thin square lamina is less than the atmospheric
pressure over an area bounded by the leading edge and a
curve which recedes toward the rear edge of the plate as
the angle of inclination increases from 0° up to a critical
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angle of about 20°. When this angle is exceeded the
pressure on the back of the plate is everywhere less than
the atmospheric.

The critical angle differs from that found by Eiffel in
his experiments with a stationary plane in a current of air
and this indicates that results obtained by one method of
experiment can not be applied with full rigor to cases
which would correspond to the other method of experi-
ment,.

Unless the presence of the motor car alters the flow of
air the exact cause of the difference between the two
cases is not easily detected. In the mathematical theory
it has generally been assumed that the flow of fluid around
a stationary obstacle can be deduced at once from the
corresponding flow, in which the fluid is at rest at infimty
and the body moves through it, by simply impressing on
the fluid and the body a velocity which will annul the
velocity of the body. This may, however, only bhe true
when the motion is steady. The question has been
raised again and discussed in a rccent paper by J. B.
Henderson (43) who refers to some experiments made by
Dubuat in 1786. This experimenter measured the force
required to tow a Elate in still water, and also the force
required to hold the same plate stationary in a stream,
the relative motion of plate and water being the same in
the two cases. He found the ratio between the two
forces to be 1.3:1.

A possible explanation of the difference, assuming it to
be real, is that the eddy plhenomena are not the same in
both cases. Eddies arise from instability in the steady
motion, and to prove the equivalence it would have to
be proved, not only that the inception of instability, but
also that the resulting motion following on instability
depend solely on the relative motion (43).

t is very probable that conditions in which the motion
of the fluid is not really steady play an important part
in experimental work and this brings us to the considera-
tion of motions which are permanent because they are
periodic.

2. In 1908 H. Bénard (44) discovered that when the
surface of a liquid is parted by a thin vertical prism
which is moved with uniform velocity parallel to its

lane of symmetry, two parallel sets of gyration centers
?orm behind the prism. The vortices belonging to a row
are at equal distances apart and have the same sense of
rotation which is opposite, however, to that of the vor-
tices in the otherrow. A central dissymmetrical space was
detected at the back of the prism and was identified with
the vibration zone where the alternate vortices are formed.
At two instants separated by half a period. the appear-
ance of the zone is exactly svminetrical with regard to
the plane of symmetry of the obstacle. At first the vor-
tices have the same veloeity as the moving prism, but
quickly slacken, at the same time diverging to the right
and left. They quickly attain their transversal limit,
longitudinal equidistance, and limiting speed, which are

reserved if the vortices are not too much deadened.
BVhen old they are more and more sensible to accidental
fluctuations, while the equidistance, in particular, is less
and less well defined. The arrangement of vortices is
indicated in the following figure (fig. 1).
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An alternate ;{?riodic arrangement of vortices of this
type has been observed many times. In the following
diagram (fig. 2), taken from a paper by Osborne Rey-
nolds (45), a series of spiral-shaped eddies is shown which
hears some resemblance to the above arrangement. The
diagram indicates the way in which a thin stream of
liquid becomes unstable when moving through another

liquid.
\ Flc.2.
=

A somewhat similar arrangement of vortices is produced
by the blades of a screw propeller (46) and a vibration
of the vortex field has been noticed in some experiments
on the flow of water round a model balloon (47), while
Borne (48) has recently verified the fact that vortex fila-
ments are formed alternately in the flow of air round
different obstacles and has obtained some photographic
records of the phenomena in question.

Experiments analogous to those of Bénard have also
been made by Rubach (49), Kérmén (49) and others
with similar results. In the case of a circular cylinder
moving through a liquid Rubach (50) found that two
vortices with opposite directions of rotation are soon
formed behind the cylinder and their strength continually
increases, new rotating fluid being derived from the
““layer of separation’ which first forms behind the cylin-
der. The pair of vortices recedes from the cylinder with
a velocity which is small compared with the progressive
velocity of the cylinder and its pair of vortices relative to
the stationary fluid. This state of affairs, however, is
unstable; a periodic motion soon sets in with a continual
formation of mew vortices from opposite sides of the
cylinder.

A mathematical theory of the two rows of vortices
considered above has been given by Karmén (49), who
ﬁn(}l)sl that under certain circumstances such a system is
stahle.

In the case of a 1perfe.ct; incompressible fluid, the motion
of a system of isolated rectilinear vortex filaments whose
axes are all parallel, may be studied by a well-known
method (51). Since each vortex moves with the fluid,
the velocity of a vortex, A,, can be calculated from the
stream-line function due to the remaining vortices.
Writing z = x+iy, w = x—1iy, the equations of motion
of the vortex A, are contained in the single equation

dzy _ '_i_)" v_ kg

“ep _ ,
dt Zn___q_J Wp— W,

where k, is the strength of the vortex A, and the prime
denotes that in the summation g does not take the value p.

To study the small vibrations of the system, we write
zp+¢p instead of z,, w,+%5, instead of w, and neglect
terms of order higher than the first in the small quantities

Cps §5-  We thus obtain
o _INVy Sl
a2 E kq(.wp_wq)z

g

So far the work is quite general. Now let us assume
that the vortices in the first row are all of strength k
and that their undisturbed positions are given by

zq=qlr g=0,+1,+2, - - -
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Let us assume, moreover, that the vortices of the second
row are each of strength —Z%, and that their undisturbed
positions are given by

Z,=(7'+%)l+ih, r=0, £1,+32, - - -

For simplicity each row of vortices is supposed to
extend to infinity both ways,

Using the inferiors p, ¢, for vortices in the first row, and
r, 8, for vortices in the second row, we obtain the equations

&ty YV Gty NV Gk
dt 21rq=__m(p—q)’l’ 21rr=_m[(p—r—§)l-'ih]3’
d, LNV &—§ ik £&,—¢

@~ T EL_._/‘N(s—r)’ 21:2—_/& [(s—q+ J;)Zq+'ih]"

Now consider the disturbance in which ¢,, &, &, &,
are the unambiguous parts of the expressions ¢,ex'#,
(e te, £ okips, £ exi+Dé | respectively, ¢ being a real
quantity independent of p and s and unambiguous, while
Loy &1y €o» &, are real or complex quantities which may
involve the ambiguity 4. Let us assume, moreover,
that £, &, & and ¢, depend on ¢ through a factor type
¢f;. We then have

Cof+ A8, +ipé =0, £0— 4§ —wk,=0,

where .
_ kN1 —cosn¢g ik 1

g L o
T 'n=I! n 2nm=_m[(m Dil-hP

k 2”;\’ eEm+Dis
K=z 21 [Gnr BT
M= — o

3 m+3)i
v= %:Z:w (G DT F
In a similar way we find that
§f — Ao+ 08, =0, &0+X+ipl,=0.
Eliminating &, &,, &,, £;, We obtain the equation
(424 2N+ 24+ —2B(p—v)*=0
which is satisfied by

6= 5 (u—) i BT TG

For stability it is necessary that 0 should be a purely
imaginary quantity. Now x—» and p4-v are real, conse-
quently for stability 224 }(x+v)* must be positive for all
real values of the quantity ¢, which specifies the relations
between the phascs of the different vortices. Now when
¢ =z, p+v = 0, hence for stability A must also vanish
when ¢ = =z, otherwise 4 would be negative and there
would be two values of § with a positive real part. The

equation 22 = 0 reduces, when ¢ = z, to cosh”%’£ =2, or

%=O.283 ... ¢H)

For other ratios of A to I the system of vortices is
unstable. A complete proof that the system is stable
for all displacements when A and ! are connected by the
relation (1) has not been given, and in spite of Karmén's
assertion, there is some doubt about the truth of the
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theorem, judging from the report of a paper presented
to the Royal i%ocietay of Edinburgh on March 1, 1915, by
H. Levy. It is easy to see, however, that 424 (x+v)
is positive when U¢ = 0.

he velocity U with which the whole system of vortices
moves is given by the formula

e h k ah
U= ) S a ™ T =T

M=y

Kéirman has used the two rows of vortices to obtain a
theory of resistance in which the resistance encountered
by a body moving with uniform velocity, ¥, in a perfect
fluid is expressed in terms of V, h, I, and the width of the
body in a direction perpendicular to the direction of
motion. The quantity I may be obtained ex¥erimentally
from observations of the periodic system of vortices in
the wake behind the body.

In connection with the flow produced by a movin
right circular cylinder, L. Féppl (50) has 1nvestiga,te§
whether there are any places behind a cylinder in uni-
form motion, where two equal vortices with opposite
senses of rotation can be placed so as to be at rest rela-
tive to the cylinder. By considering the images of the
vortices in the cylinder, he finds that the vortices must

lie in symmetrical positions on the curves ﬂ;2'y=r——'1;o

where r is the distance of a point from the axis of the
cylinder, the radius of the cylinder being unity. This
result has been tested by an examination of Rubach’s
hotographs and agrees very well with the measurements.
he strength of the vortices is greater the farther they
are from the axis of the cylinder.
3. Let us now see what relation some of the preceding
results and theories may have to atmospheric problems.
In his memoir ““Uber atmosphirische Bewegungen”
(52) Helmholtz has made some remarks on the origin of
depressions and anticyclones and has considered the
possibility of surfaces of discontinuity in the atmosphere,
these being surfaces which separate masses of air with
different velocities and different temperatures or densi-
ties. Such surfaces are sooner or later broken up, eddies
are formed, and the masses of air at different tempera-
tures intermingle. Helmholtz thus regards instability as
a more powerful cause than friction in establishing s
transition stratum within which the change of density
takes place gradually. The effect of viscosity in smooth-
ing out discontinuities may be studied by considering
some of the well-known problems in the theory of the
conduction of heat, wherein a discontinuity in the initial
conditions instantly disappears after a time. Helmholtz
remarks (53) that—

As in the neighborhood of the Equator the air of the earth’s surface
is warmed and rises, so in the neighborhood of the poles it is cooled
and sinks. The cold layers will endeavor to flow separately to the
earth and form east winds; above them the vacant place must be
filled and the warm air blows there as a west wind or cyclone. It
would be posgible for there to be equilibrium if the lower cold layers
did not require a more rapid motion of rotation owing to friction.
The spreading out of the polar east winds, if it is indeed recognizahle
in its principal features, takes place very irregularly, since the cold

ole does not coincide with the rotation-pole of the earth and low

ills have considerable influence. Through such irregularities it
happens that the anticyclonic movement of the lower layers and the
gradually increasing cyclone of the upper layers, which is to be
expected at the pole, resolve themselves mto a large number of irreg-
}ﬂarly moving cyclones and anticyclones with a preponderance of the
ormer,

This idea has been recently taken up and developed by
F. M. Exner (54), who has combined 1t with some results
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obtained by M. Margules (§5). The fundamental hypo-
theses may be briefly stated as follows:

Let us suppose, with Helmholtz, that in the neighborhood of the pol-
the cooled air sinks and endeavors to spread out toward the sonth
beneath the overlying warmer layers, like a heavy fluid heneath a
lighter one. By the deviating force of the earth’s rotation the tlow of
cold air toward the south should be directed toward the west, the culd
air should therefore enter the high latitudes as east winds; south of this
the warm west wind should prevail. According to the caleulations of
Helmholtz and Margules, the cold layer can lie in a state of equilibrium
like a wedge below the warm air. On account of the friction at the
earth’s suriace which the lowest layers experience, the cold east wind
and the warm west wind are retarded; the surface of separation is con-
sequently not stable but bends toward the horizon. Cold air flows
southward, while warm air flowa northward.

This is an overturning of the layers in the sense of Mar-
gules, whereby kinetic energy is set free by the work of
gravity. Exner has made some calculations to ascertain
whether, under plausible assumptions as to the magnitude
of the friction, this is sufficient to account for the great
air movements, and he finds that this is the case. He
then says:

Since the friction on a parallel of latitude is very different for different
lengths, there is a very different production of kinetic energy in differ-
ent places. This signifies the generation of depressions at certain
parts of a parallel of latitude, which are characterized by particularly
graat hindrances to the east-west air motion. The growth of depressions
may consequently be connected with certain spots on the earth’s sur-
face. Among these the continent of Greenland plays a particularly
important part, for the cold ¢ast winds are dammed at its east front and
thrown toward the south. On account of the Iack of observations in
high latifludes this conclusion has unfortunately not been sufficiently
confirmed.
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An examination of the weather maps of the Northern
Hemisphere (56) will show that this theory of Helmholtz
and Exner does account for the general features of the
pressure distribution, as there is frequently a circle of lows
at about the same latitude as Greenland, and this ring of
lows is surrounded by a belt of highs. The arrange-
ment of these lows and highs bears some resemblance to
Bénard's two rows of vortices, but unfortunately the lows
are more numerous than the highs, so that a high is not
always equidistant from two consecutive lows as in
Bénard’s arrangement.

Very little has been done in the theory of the stability
of a large number of isolated vortices, that might con-
ceivably bave an application to atmospheric problems.
Perhaps the arrangement considered by Lord Kelvin in
his paper *‘On the stability and small oscillations of a
perfect liquid full of nearly straight coreless vortices”
(57) might with advantage be transferred to the surface
of a sphere and studied more fully. More progress has
been made in the theory by using the idea of a surfuce of
discontinuity, although, as Exner remarks, there is no
direct evidence that a sharp discontinuity in temperature
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occurs. Nevertheless the results which are obtained by
using the idea may be expected to closely resemble the
actual conditions.

. When the surface of discontinuity is stationary, its
inclination may be deduced from a formula given by
Margules (58).

_ Using the equations for stationary rectilinear motion
in the form
197 o 10p, _
py QY =2usimg.,, py 0z —9
10p5_ o, 10p,
£, Y = 2wsIng.u,, iz -4,

where u is the velocity parallel to the axis of X, » the
pressure, p the densm{‘ of the air, w the angular velocity
of the Earth, and ¢ the latitude, he writes

e .
Pe—Pa™= _a%'dﬂ = 2wp,u, sin ¢.dy.

d
Po—Pe=Lbedr = —gp,.dL.

0 .
Po—DPa= bz:;’-dn = 2wp,U, sin ¢.dy.

b}
Di—Pa= ‘gI;“"dC= ~gpa.dL-
therefore

2w, sin ¢.dy — go,d =Py — Pa = 2wpsu, sin ¢.dy — gp,.dL,

and so )
tan @ =d_C _2wsn P o1ty — Uy
dn g P1—0;

Margules also obtains a more exact formula by taki
into account the curvature of the Earth. Sandstrém (59
has shown further that it is possible to derive the variation
in intensity of a vortex sheet from the inclination of the
surface of discontinuity as well as from the temperature
and distribution of humidity in the neighborhood of the
surface. He also gives a criterion depending on the rela-
tive velocity (60). Some evidence of the existence of a
condition in the atmosphere closely resembling a surface
of discontinuity has been obtained by W. Schmidt in his
observations of air-waves in valleys (61). He finds that
the amplitudes of the waves increase continuously as the
warm fohn current aloft sinks to the surface, until they
suddenly end when the fohn breaks through. He con-
siders that the air-waves are formed at the upper surface
of the cold valley wind over which blows the warm cur-
rent of the fohn. The appearance of the air-waves is
frequently associated with an advancing depression, and
may thus be regarded as a weather prognostic.

he motion of surfaces of discontinuity in the atmos-
Ehere may perhaps be studied with the aid of some well-
inown theorems relating to the propagation of waves of
discontinuity (62). One of these theorems may be de-
duced at once from the equation of continuity. Itstates
that if Vis the velocity of the surface of discontinuity in a
direction at right angles to itself, », and v, the com-
ponent velocities of the air on the two sides of the surface
n a direction at right angles to the surface, p, and p, the
densities of the two contiguous masses of air, then

pi(V—v) = po(V—v,) .
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Let us apply this equation to the case of a line squall
on the supposition that the inclination of the surface of
discontinuity to the horizon is as shown in figure 4.
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Let U,, U,, be the velocities of the air on the two sides
of the surface of discontinuity.

Since the rate of advance of the line of the squall is a
little greater than the surface velocity of the colder
air (63) we have

V cospg > U, cosf

Now »=U, cos 7, and cos0=cosﬁco%+ sinfsiny,
therefore cos 6> cosycos, and so wv,< U,cosfsecf<
V. It follows then that ¥ 1s also greater than v,. This
means that warm air flows across the surface of dis-
continuity and mixes with the cold air, a result which
may perhaps be regarded as an illustration of the principle
that Ywat always Hows freely from the warmer mass to
the cold and not vice versa. The supposition made with
regard to the inclination of the surface of discontinuity
and its velocity, is thus consistent with the above equation
‘of continuity.

The flow of fluid past a spherical obstacle has an in-
teresting application to the atmospheric problem of the
flow of air past a hemispherical mountain, as has been
pointed out by W. Schmidt (64). The influence of the
compressibility of the air has been considered by Y.
Okada (65) and has been found to be negligible, provided
the velocity of the air is small compared with the velocity
of sound. When the surface of the mountain is treated
as a half cylinder, the investigations in the paper of
L. Foppl (50) become of interest. By reducing the
cylinder to rest, we see that it is possible for a stationar
vortex to form behind the mountain, a result whic
:Erees with observations. L. Foppl's investigation of

o stability of the two vortices behind a circular cylinder
is thus of interest for the atmospheric problem. 1t must
be remembered that in this case the two vortices must
slways be images of one another in the plane of symmetry,
i. 8., the plane which divides the cylincﬁar into two halves;
the displacements of the two vortices are consequently
symmetrical with regard to this plane and the arrange-
ment is stable, whereas for asymmetrical displacements
the arrangement is unstable.
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III. THE DISTRIBUTION OF THE RAINFALL IN THE
WESTERN UNITED STATES.

By B. C. Warus, B. Sc. (Economics), F. R. G. 8., F. 8. 8.
[Dated: North Finchley, England, Feb. 24, 1915.]

In this Review for January, 1915, the writer mapped
in some detail and discussed the distribution of rainfall
intensity in the eastern United States; the present paper
is a similar discussion of the rainfall intensity in the
western portion of the Republic.

The accompanying 12 monthly maps of equipluves
(figs. 31-42) present a notable regularity almost through-
out the year, a very wet area gradually fades off into a
vory dry district. The exceptional month is October,
when_the raininess is uniformly below the average, and
the elevated lands are wetter than the lowlands. The
second general feature is the absence of very marked
raininess or dryness on the mountains at any time of
the year. This fact is well shown by the graphs for the
mountain divisions (fig. —). Consequently, in a broad
way, the West contains three regions with three types of
rainfall: (1) The Far West, including the coast fands.
with great rainfall intensity throughout the period
November to March, i. e., winter rains; (2) the Mountains,
never very wet, never very dry; (3) the Eastern Slopes,
with great rainfall intensity in the north from Apri{) to
June, and in the south from July to September, i. e.,
summer rains.

In January the equipluves run north and south and
raininess decreases “steadily eastwards. This month
marks the climax of the influences which cause rain and
z)vhlch are due, in the main, to the winds from the Pacific

cean.
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F1G. 24.—Map showing the driest months in the western United States.

In February the rainfall influences begin to weaken
along the northwest coast and raininess increases on the
eastern slopes.

F16. 25.—Map showing the wettest months in the western United States.



